Elastic energy storage in the mantis shrimp's fast predatory strike.

نویسندگان

  • T I Zack
  • T Claverie
  • S N Patek
چکیده

Storage of elastic energy is key to increasing the power output of many biological systems. Mantis shrimp (Stomatopoda) must store considerable elastic energy prior to their rapid raptorial strikes; however, little is known about the dynamics and location of elastic energy storage structures in this system. We used computed tomography (CT) to visualize the mineralization patterns in Gonodactylaceus falcatus and high speed videography of Odontodactylus scyllarus to observe the dynamics of spring loading. Using a materials testing apparatus, we measured the force and work required to contract the elastic structures in G. falcatus. There was a positive linear correlation between contraction force and contraction distance; alternative model tests further supported the use of a linear model. Therefore, we modeled the system as a Hookean spring. The force required to fully compress the spring was positively correlated with body mass and appendage size, but the spring constant did not scale with body size, suggesting a possible role of muscle constraints in the scaling of this system. One hypothesized elastic storage structure, the saddle, only contributed approximately 11% of the total measured force, thus suggesting that primary site of elastic energy storage is in the mineralized ventral bars found in the merus segment of the raptorial appendages. Furthermore, the intact system exhibited 81% resilience and severing the saddle resulted in a non-significant reduction to 77% resilience. The remarkable shapes and mineralization patterns that characterize the mantis shrimp's raptorial appendage further reveal a highly integrated mechanical power amplification system based on exoskeletal elastic energy storage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linkage mechanics and power amplification of the mantis shrimp's strike.

Mantis shrimp (Stomatopoda) generate extremely rapid and forceful predatory strikes through a suite of structural modifications of their raptorial appendages. Here we examine the key morphological and kinematic components of the raptorial strike that amplify the power output of the underlying muscle contractions. Morphological analyses of joint mechanics are integrated with CT scans of minerali...

متن کامل

Gearing for speed slows the predatory strike of a mantis shrimp.

The geometry of an animal's skeleton governs the transmission of force to its appendages. Joints and rigid elements that create a relatively large output displacement per unit input displacement have been considered to be geared for speed, but the relationship between skeletal geometry and speed is largely untested. The present study explored this subject with experiments and mathematical model...

متن کامل

Ritualized fighting and biological armor: the impact mechanics of the mantis shrimp's telson.

Resisting impact and avoiding injury are central to survival in situations ranging from the abiotic forces of crashing waves to biotic collisions with aggressive conspecifics. Although impacts and collisions in biology are ubiquitous, most studies focus on the material properties of biological structures under static loading. Here, we examine the mechanical impact properties of the mantis shrim...

متن کامل

Stress physiology and weapon integrity of intertidal mantis shrimp under future ocean conditions

Calcified marine organisms typically experience increased oxidative stress and changes in mineralization in response to ocean acidification and warming conditions. These effects could hinder the potency of animal weapons, such as the mantis shrimp's raptorial appendage. The mechanical properties of this calcified weapon enable extremely powerful punches to be delivered to prey and aggressors. W...

متن کامل

Predatory pollinator deception: Does the orchid mantis resemble a model species?

Cases of imperfect or non-model mimicry are common in plants and animals and challenge intuitive assumptions about the nature of directional selection on mimics. Many non-rewarding flower species do not mimic a particular species, but attract pollinators through ‘generalised food deception’. Some predatory animals also attract pollinators by resembling flowers, perhaps the most well known, yet ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 212 Pt 24  شماره 

صفحات  -

تاریخ انتشار 2009